
Search-based Improvement of Subsystem Decompositions

Olaf Seng, Markus Bauer, Matthias Biehl and Gert Pache
FZI Forschungszentrum Informatik

Haid-und-Neu-Strasse 10-14
Karlsruhe, Germany

{seng,bauer,biehl,pache}@fzi.de

ABSTRACT
The subsystem decomposition of a software system degrades
gradually during its lifetime and therefore it gets harder and
harder to maintain. As a result this decomposition needs
to be reconditioned from time to time. The problem is to
determine a suitable subsystem decomposition that can be
used as a basis for future maintenance tasks. This paper de-
scribes a new methodology that computes such a subsystem
decomposition by optimizing metrics and heuristics of good
subsystem design. The main idea is to treat this task as a
search problem and to solve it using a genetic algorithm.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Design

Keywords
Software clustering, Remodularization, Genetic Algorithms,
Software Metrics, Design Heuristics

1. INTRODUCTION
The structure of a software system inevitably degrades

during its life cycle, because it has to be adapted to new
and changing requirements [14]. Since these requirements
are usually unforeseen and need to be implemented within
a tight time frame, not enough care is spent on maintain-
ing the system’s structure. Since the structure has a major
impact on the costs of system evolution, it has to be recon-
ditioned from time to time.

One particular structural aspect is the subsystem decom-
position of a software system. Subsystems group related
functionality of the system into units of development. There-
fore, the decomposition of a software system into subsystems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

Figure 1: Example structure

is a key to handle the system’s complexity. With the help
of a proper subsystem decomposition, system understanding
can be reduced to global knowledge on how the subsystems
interact with each other. Additional implementation-level
knowledge required to perform development or maintenance
tasks can usually be confined to the inner structures of in-
dividual subsystems. Additionally, the decomposition of a
software system into subsystems is a prerequisite to properly
organize other aspects of the system’s development, such as
distributed development, reuse, encapsulating design deci-
sions, testability and system deployment and operation.

Several guidelines and heuristics for good subsystem de-
compositions such as low coupling values between subsys-
tems exist. In practice however, it is hard to reconcile all of
them, since an improvement with respect to one guideline
might lead to a degradation with respect to another.

Consider for example the structure shown in Figure 1.
In the first diagram, each class forms its own subsystem. It
should be obvious, that this is not a good subsystem decom-
position. Placing Class1 and Class2 into a Subsystem1 and
Class3 and Class4 into a Subsystem2 would certainly lead
to more reasonable coupling and cohesion values, however
it would also introduce a direct cyclic dependency between
the two subsystems, which is generally regarded as an anti-
pattern for subsystem decompositions.

The goal of our work is to develop a methodology for
object-oriented systems that, starting from an existing sub-
system decomposition, determines a decomposition with bet-
ter metric values and fewer violations of design principles.

2. THE APPROACH
We express the task of improving a subsystem decompo-

sition as a search problem. Software metrics and design
heuristics are combined into a fitness function which is used
to measure the quality of subsystem decompositions. Our

1045

search problem then consists in finding a subsystem compo-
sition that optimizes this fitness function.

The fitness function uses coupling, cohesion and complex-
ity metrics, as well as further heuristics such as cyclic depen-
dencies and bottlenecks. Cyclic dependencies between two
or more subsystems are undesired because they affect the
understandability and maintainability of the system. Bot-
tlenecks are subsystems, which know about and are known
by too many other entities [3]. If a desired architecture is
given, e.g. a layered architecture, and there are several vio-
lations, our approach attempts to determine another decom-
position that complies to the given architecture by moving
classes around. Additional heuristics can be found in [13].

Well established search techniques like Simulated Anneal-
ing or Hill Climbing can be used to solve this search problem.
However, our preferred optimization technique is a Genetic
Algorithm (GA), since using its crossover operator one can
take advantage of regularities of the search space and there-
fore traverse it more efficiently [5].

2.1 Overview
Figure 2 shows the general steps of our approach using a

genetic algorithm.

Figure 2: Algorithm

Instead of working directly on the source code, we first
transform it into an abstract representation, which is suit-
able for common object orientied languages. In our GA,
several potential solutions, i.e. subsystem decompositions,
form a population. The initial population can be created
using different initialization strategies, which we are going
to describe in Section 2.2. With the help of the genetic op-
erators mutation and crossover, the n solutions of a popula-
tion are randomly modified or new solutions are created by
recombining existing solutions. Using the fitness function
and a tournament selection strategy the most promising n
elements are selected and form the next generation’s pop-
ulation. After a certain, predefined number of generations,
the optimization goal is reached and the algorithm picks the
best subsystem decomposition of the final population.

Before the algorithm starts, the user can customize the
fitness function by selecting several metrics or heuristics as
well as by changing thresholds (see Section 2.3). Upon ter-
mination of the algorithm, the new structure is presented to
the user. By comparing the initial structure with the final
structure proposed by our algorithm, the user can easily in-
fer a number of refactorings to improve the decomposition
of the software system, such as moving a class from one sub-

system to another one, splitting up an existing subsystem
or joining two existing subsystems. These refactorings can
then be carried out manually or with tool support [7, 16].

Our model is a directed graph. The nodes of the graph can
either represent subsystems or classes. Edges between sub-
systems or subsystems and classes denote containment rela-
tions, whereas edges between classes represent dependencies
between classes. A class depends on some other class, if

• it inherits from the other class

• its implementation calls one ore more methods of the
other class

• its implementation accesses attributes of the other class

• it references the type of the other class, e.g. in some
variable declaration

We can have multiple dependency edges between classes.
These dependencies will be evaluated by the fitness functions
(and also by the operators of our GA).

2.2 Hybrid GA design: Forming and
preserving building blocks

In this section we propose a hybrid GA for software de-
composition that is supported by domain knowledge and
problem specific algorithms. According to the building block
hypothesis, GAs construct high quality solutions by assem-
bling building blocks [8]. Building blocks are short, low
order, highly fit schemata. The generic GA [9] finds, pre-
serves and composes the building blocks over time by ap-
plying operators and selection. In our approach we design
the components of the GA (operators, representation, ini-
tial population) by adding domain knowledge to support
the forming and preserving of building blocks.

Our approach is based on the Grouping Genetic Algorithm
(GGA) which is particularly well suited for finding groups in
data [5]. The decomposition of software systems is a special
kind of grouping problem, where the set of all classes is
decomposed in a complete and consistent set of subsets or
subsystems. Therefore the GGA can be applied for software
decomposition.

2.2.1 Representation
When building a representation for subsystem decompo-

sitions the problem is to map the two-layered data structure
of the set of subsystem candidates, which in turn consist of
classes, to a sequence of genes. The representation of the
GGA allows us to do this by associating subsystem candi-
dates with genes and using the power set of classes as the
alphabet for genes. Consequently a gene is associated with a
set of classes, i.e. an element of the power set. Furthermore,
this representation allows a one-to-one mapping of geno- and
phenotype to avoid redundant coding.

2.2.2 Operators
We use an adapted GGA crossover operator and three

kinds of mutation. The operators proposed by the original
GGA in [5] are kept very general and consequently blind for
domain knowledge. We adapt them to use domain knowl-
edge that is encoded in the dependency graph, by embed-
ding problem specific heuristics into the operators. Thus we
are able to guide the creation of new offsprings in such a

1046

way, that the newly created individuals are likely to have an
improved fitness.

Furthermore the operators are designed to be non-destructive
and to preserve a complete subsystem candidate as far as
possible. The operators take care to produce only consistent
and complete decompositions, so we do not waste computa-
tion time on infeasible solutions.

The crossover operator forms two children from two par-
ents. After choosing the parents, the operator selects a se-
quence of subsystem candidates in both parents (step 0)
and mutually integrates them as new subsystem candidates
in the other parent (step 1) and vice versa, thus forming
two new children consisting of both old and new subsystem
candidates. Old subsystem candidates which now contain
duplicated classes are deleted (step 2), their non-duplicated
classes are collected (step 3) and distributed over the re-
maining subsystem candidates (step 4). In this step we con-
sider the number of dependencies between the classes that
are to be distributed to new subsystem candidates. We al-
locate them to those subsystem candidates which have the
strongest connections to the classes. The process of the
crossover operator is depicted in Figure 3, where we show
how one of the two possible children is created.

The split&join mutation either divides a subsystem can-
didate into two smaller subsystem candidates or joins two
subsystem candidates by unifying their classes. The oper-
ator splits a subsystem candidate in such a way, that the
separation in two subsystem candidates occurs at a loosely
associated point in the dependency graph. Similarly, the
operator connects two subsystem candidates with strong as-
sociation weight.

Elimination mutation deletes a subsystem candidate and
distributes its classes to other subsystem candidates, based
on association weights. Elimination mutation is part of our
crossover operator discussed above.

Adoption mutation tries to find a new subsystem candi-
date for an orphan, i.e. a subsystem candidate containing
only a single class. Thus our approach naturally implements
an orphan adoption technique [18]. Orphan adoption avoids
useless subsystems candidates containing only a single class.
Our operator simply moves the orphan to the subsystem
candidate that has the highest connectivity to the orphan.

2.2.3 Initial population
The building block theory tells us, that the GA constructs

solutions by combining building blocks. But where do these
building blocks come from? As a general purpose search the
GA is claimed to find building blocks over time [8]. But
since we design a specialized GA for software decomposi-
tion, we can use domain knowledge to shortcut the search
for building blocks and speed up the convergence. Thus
the suboptimal results of problem specific algorithms can
be used to create an initial population that might help the
GA to find proper building blocks fast [10].

For good starting populations, two competing properties
are desirable. On the one hand the individuals should have
a high fitness, so good building blocks are already present in
the population. On the other hand, the GA needs diversity
in the population to be able to explore the search space.

We propose to balance the competing goals by taking ran-
domly selected connected components of the dependency
graph for half of our population and highly fit ones for the
rest.

The strategy for finding highly fit individuals may vary
depending on the availability of existing decompositions:

• If a suitable decomposition is given (e.g. by the pack-
age structure of a Java system), we use it as the highly
fit initial population.

• If no decomposition is available, we attempt to build
several suboptimal decompositions. Our approach is
based on a modification of Kruskal’s algorithm for the
construction of minimum spanning trees (MST) on the
dependency graph [20]. We modify this greedy algo-
rithm by defining a threshold for the unification of
two subtrees of the MST. This results in a solution
that consists of a forest representing initial building
blocks of the decomposition. Using different thresh-
olds, which are chosen randomly from a certain inter-
val, we can create a set of individuals representing the
highly fit half of our initial population.

2.3 Fitness function
Our fitness function fit(s) is a multi modal fitness func-

tion. Each of the individual functions calculates a value
between 0 and 1, where 1 is the optimal value. Such a multi
modal fitness function can be easily mapped into a linear
fitness function, by just adding up the weighted individual
values.

fit(s)

cohesion(s) :

#s∑
i=1

#c(si)∑
j=1

#k(cj)

#c(si)2

#s

coupling(s) : 1 −
#s∑
i=1

#rO(si)
#r

complexity(s) :
#s∑
i=1

(
com(si) ∗ #c(si)

#c

)

cycles(s) : 1 −
n∑

i=1
size(scc[i])k

#sk

bottlenecks(s) : 1 −
#s∑
i=1

min(inDeg(si),outDeg(si))
#s∗maxDeg

Currently we are using standard coupling and cohesion
metrics as parts of our fitness function [2]. To measure
the cohesion for a system s, we sum up the cohesion val-
ues for the individual subsystems in s. The cohesion for a
subsystem si is determined by counting the number of dif-
ferent classes inside si known by some class cj ∈ si (#k(cj))
and divide this by the square of the number of classes in si

(#c(si)). This value is then normalized by dividing it by
the number of subsystems (#s).

The coupling function is the sum of the coupling values for
each subsystem in s. The coupling value for one subsystem
si is calculated in the following way: at first, we count the
number of dependency edges between classes inside si and
classes belonging to other subsystems sj (#rO(si)). This
number is divided by the overall number of dependency
edges (#r) in s.

The complexity function adds up the complexity values
com(si) of all subsystems si in s, normalized by the propor-

tion of classes #c(si)
#c

of si in s. The complexity value com(si)
of a subsystem si depends on four threshold parameters:
com(si) is considered to be optimal (i.e = 1) if the com-
plexity of a subsystem is inside the interval [minO, maxO].
Otherwise, the value is linearly interpolated between 0 and 1
inside the intervals [minU, minO] and [maxO, maxU]. This

1047

Figure 3: GGA crossover for one child, where Ssc stands for subsystem candidate and C for class

is depicted in Figure 4. The complexity of a subsystem can
be measured in different ways. We have successfully used
the number of classes or McCabe’s control flow complexity.
The advantage of such a fitness function is its fuzzy shape,
which does not punish complexity values too hard if they
are only slightly outside the predefined optimal values.

Figure 4: Shape of complexity fitness functions

For calculating the cycle and bottleneck fitness functions,
we use a customized graph model, that can be easily con-
structed using the model described in Section 2.1 . Nodes
denote subsystems and the only kind of edges we have are
dependency edges between subsystems. A subsystem de-
pends on another subsystem, if one of its classes depends
on a class belonging to the other subsystem. The fitness
value for cycles is calculated by summing up the size of
strongly connected components of this modified graph. To
give higher penalties to cycles with more than two subsys-
tems involved, we usually use a factor k ≥ 1. To normalize
this fitness value, the sum is divided by the overall number
of subsystems.

For calculating the bottleneck metric for a subsystem we
measure the in-degree and out-degree of each subsystem

and divide the minimum of the two by the highest in- or
out-degree (maxDegree) currently found in our customized
graph.

3. EVALUATION

3.1 Implementation
To evaluate our approach, we have implemented a tool

prototype, Evo. The focus of this prototype is to experi-
ment with different variations of our GA, e.g. testing differ-
ent combinations and parameters for the operators, strate-
gies for initial populations, representations and fitness func-
tions. Using the Recoder1 library, Evo constructs a model
(see Section 2) of the system to be analyzed. Our GA is
implemented on top of this model. To experiment with our
GA, the implementation of the GA is structured into a num-
ber of exchangeable components. That way a large number
of variations to our GA can easily be evaluated.

Applying Evo to a number of case-studies has shown, that
even though our operators are a little more complex than
those of the classic GA, the execution of our algorithm is
quite fast: the execution usually takes a few minutes on an
average PC for 100 solutions per population and 100 gen-
erations. We gain speed by using the efficient tournament
selection instead of roulette wheel selection. Our evaluation
on the clustering of different software systems has revealed,
that results of roulette wheel selection are only slightly bet-
ter than those of tournament selection. The adapted oper-
ators allow us to use a relatively small population size and
few generations.

1http://recoder.sf.net

1048

In the following, we present some results from applying
our approach to the Java case-study JHotDraw. We show
that our approach works well and provide some insights on
the impact of our fitness function – especially the cycle and
bottleneck heuristics. We conclude our evaluation by evalu-
ating and comparing a few variations of our GA.

3.2 Case-study: JHotDraw
Our case-study JHotDraw2 (Version 5.3) is a Java GUI

framework for technical and structured Graphics. JHotDraw
in this version consists of nine packages and 207 classes.
Since it is a Java case-study, we used the existing pack-
age structure as an initial subsystem decomposition. JHot-
Draw’s framework subsystem was intentionally left out, since
there are natural static dependencies between a framework
and framework users, that cannot be treated properly with-
out classifying the entities beforehand. We concentrated on
the four subsystems: contrib, figures, standard and util that
make up most of the application’s core (165 classes).

The column of the following table labelled ”Initial” shows
the fitness values for the initial subsystem decomposition.
The higher the values the better.

Initial CC CCC CCCBC
Coupling 0.573 0.86 0.63 0.57
Cohesion 0.51 0.54 0.55 0.55
Complexity 0.04 0.23 0.98 0.95
Bottlenecks 0.583 0.91 0.76 0.93
Cycles 0 0.88 0.30 0.93

We can observe that the values for cohesion, complexity
and cycles are not too good. This is due to the fact that
the subsystems contain too many classes, classes inside the
subsystems are not really related and all subsystems form
one strongly connected component. The next three columns
show the average results of seven optimizations carried out
three times for different optimization goals. At first, we only
optimized coupling and cohesion (CC), at second, we addi-
tionally used our new complexity fitness function (CCC) and
at third, we made use of the cycle and bottleneck heuristics
(CCCBC).3 Using the first optimization goal, we were able
to achieve really good coupling values. Cohesion, bottleneck
and cycle values are ok, but complexity values are pretty
bad. This is due to the fact, that almost all classes are put
into one giant subsystem. This also explains the good values
for the cycle and bottleneck heuristics. Using complexity as
an additional optimization goal, we can achieve properly-
sized subsystems, but the values for bottlenecks and cycles
are bad.

Only if we optimize for all of our criteria, we are able to
achieve a suitable compromise with very good complexity,
bottleneck and cycle values and good values for coupling and
cohesion. The best solution resulted in a subsystem decom-
position consisting of 25 subsystems with an average subsys-
tem size of seven classes. The strongly connected component
originally consisting of all subsystems has now been reduced
to a strongly connected component consisting of only five
out of 25 subsystems. We achieved 15 subsystems with an
in- or out-degree of zero. The highest in- out-degree is six.

2http://www.jhotdraw.org/
3For JHotDraw we chose the thresholds for the complexity
function to consider subsystem sizes between five and twelve
classes as optimal.

Overall, our approach managed to improve the existing de-
composition.

Manual inspection revealed, that we successfully decom-
posed the large subsystems, e.g. all classes of the util-
package concerned with version management (VersionCon-
trolStrategy, VersionManagement, StandardVersionControl-
Strategy and VersionRequester) were put in a separate sub-
system. Furthermore, the classes of the contrib-package
responsible for modelling polygons and triangles (Polygon-
Figure, PolygonScaleHandle, ChopPolygonConnector, Poly-
gonHandle, TriangleRotationHandle and TriangleFigure)
have also been grouped into a separate subsystem.

3.3 Evaluation of the design decisions in our
GA

In Section 2.2 we presented different possibilities for the
operators of our GA and several strategies for creating the
initial population. We compare these possibilities by ana-
lyzing their effects on the development of the population by
applying each possibility exclusively on the same case-study.
For this evaluation we chose javax.swing of the Sun JDK
1.4, containing more than 1500 classes. We examine our
GA with a population of 100 individuals. For each variation
we record the development of its fitness for 100 generations
and calculate both average and maximum fitness of the pop-
ulation. To minimize the impact of random effects, we have
repeated our measurements 8 times and present both the
medium average fitness and the medium maximum fitness
of the individuals in the respective population.

Figure 5 shows the effects of crossover, split&join muta-
tion and adoption mutation applied separately as well as in
combination. For this case-study, the split&join mutation
creates individuals of the highest fitness, closely followed by
the combination of all operators. In general, however, the
most reliable way to produce highly fit individuals is to em-
ploy a combination of all operators.

In Figure 6 we present one of our experiences with dif-
ferent strategies to create initial populations. We experi-
mented with purely random decompositions and highly fit
decompositions created by the randomized MST algorithm.
We could not determine that one of the two strategies for
initial populations is consistently superior to the other one,
but each time the quality gap between them is quite large.
Thus we combine the strategies to get the best out of both.

4. RELATED WORK
The related work to our paper can be categorized into two

major areas of research: genetic algorithms and comput-
ing subsystem decompositions of software systems (software
clustering).

Genetic algorithms [8] have become a valid tool for tack-
ling computationally hard problems. Finding groups in data
is such a problem. The basic, classical GA [9] has been
successfully applied to this problem area. However, Falke-
nauer [5] pointed out the limited suitability of the basic GA
for grouping problems and proposes a heavily adapted GA,
GGA, to solve the problem of clustering data into groups.
In Section 2.2 we already showed why we chose Falkenauer’s
GGA to form the foundation for the algorithm used in our
approach and how we tailored it using specific knowledge
from the domain of software decomposition.

1049

Figure 5: Contribution of the operators in the case-study javax.swing

Figure 6: Contribution of the initial populations in the case-study javax.swing

For the remaining part of this section, we will review some
of the previous work in the research area of clustering soft-
ware systems:

In the last decade, there have been numerous publications
on using clustering algorithms for the remodularization of
software systems: Wiggerts [19], Anquetil and Lethbridge
[1], Tzerpos and Holt [17] are among the first to systemati-
cally explore the application of clustering algorithms for sys-
tem remodularization and architecture recovery. In general,
these approaches employ an abstract model of the structure
of a software system, which consists of its basic entities (e.g.
functions, classes or files) and relationships between them
(such as calls or include dependencies or type dependen-
cies). A clustering algorithm is then used to group related
entities of the software system into module or subsystem
candidates. The clustering algorithm is guided by similarity
measurements derived from the relationships between the
system’s entities.

An important group of clustering algorithms are hierar-
chical, agglomerative algorithms. These algorithms start
with the assumption that each element forms a cluster and
iteratively join the most similar clusters into bigger ones,
thus producing a tree of clusters. In practice these algo-
rithms may compute good results (see [1] and [15]), however,
for larger systems a lot of manual work is involved to pick
suitable subsystem or module candidates from the resulting
cluster tree.

Another important group of algorithms are graph based
algorithms. For example, Bauer and Trifu [2] use an algo-
rithm (MMST) that clusters object-oriented systems into
modules by picking clusters from subgraphs that can be de-

rived from the minimal spanning tree of the software sys-
tem’s dependency graph.

Mancoridis, Mitchell and others [12] treat clustering as an
optimization problem: Find the system decomposition that
optimizes a system modularization quality function MQ
which expresses that the clusters of the decomposition should
have high internal cohesion (intra-connectivity) and low ex-
ternal coupling (inter-connectivity). To solve the optimiza-
tion problem, a GA is used [4]. A tool, Bunch, implements
these ideas [11]. An extensive set of case-studies is pre-
sented to prove the suitability of the approach for software
architecture recovery. Although our approach is similar to
theirs, there are a number of differences: (1) Besides cou-
pling and cohesion, our fitness function evaluates additional
quality properties of the system’s decomposition such as in-
dividual subsystem sizes and the absence of bottlenecks and
cycles. (2) Our GA uses a different encoding to map the
clusters into a sequence of genes. Our algorithm is derived
from the GGA and associates a gene with a set of nodes of
the dependency graph, thus allowing for the embedding of
problem specific heuristics into the crossover and mutation
operators (see Section 2.2). Bunch’s encoding (the genetic
string maps each node of the dependency graph to a cluster’s
id), its crossover and mutation operators are derived from
the classic GA. (3) Our GA uses a problem specific initial-
ization strategy (by generating a number of individuals of
the initial population using a randomized MMST cluster-
ing algorithm or deriving them from an existing subsystem
structure), whereas Bunch randomly creates the initial pop-
ulation.

1050

5. SUMMARY AND FUTURE WORK
In our paper, we have presented an approach to improve

the subsystem decomposition of a software system. Core of
the approach is a genetic algorithm that automatically com-
putes a good decomposition of a software system into sub-
systems. Our approach significantly differs from the work of
others, because (1) it uses a fitness function that adds addi-
tional heuristics of good software design, and (2) it employs
a hybrid GA whose representation and operators embed do-
main knowledge. We have shown that our approach works
well, therefore we believe that it forms a convincing founda-
tion for further research in this area.

Specifically, we propose to further improve and extend our
approach in the following ways:

• Exploit more heuristics on good subsystem decompo-
sition like Robert Martin’s stability metric [13] and
embed them into the fitness function.

• Use a weighted graph to model the system’s dependen-
cies (see section 2.1). Using weighted dependencies will
allow for the distinction of the different dependency
types found in object-oriented systems. For example,
an inheritance relationship between classes should re-
sult in a stronger coupling than a simple attribute ac-
cess. Work by Bauer and Trifu [2] and Rayside et al.
[15] indicates that this will further improve the clus-
tering results. Note, that this will require a modified
fitness function that calculates coupling and cohesion
metrics from weighted edges of the dependency graph.

• Improve the clustering results by classifying the sys-
tem’s entities and their relationships according to the
role the play in a system’s architecture and introduce
weights into the dependency graph accordingly. For
example, a call to a facade [6] should be result in lower
coupling metrics than calls between classes that imple-
ment the functionality hidden by the facade. As Bauer
and Trifu have shown in [2], this will improve the sub-
system decomposition for many situations. In many
cases, for example, framework code can be successfully
separated from application code using this strategy.

We would also like to experiment with genetic algorithms
to improve the structure of the system on a finer level of ab-
straction. A genetic algorithm could move methods between
classes or improve the inheritance tree in an object oriented
software systems. First results in this area are promising
[16].

6. REFERENCES
[1] N. Anquetil and T. C. Lethbridge. Experiments with

clustering as a software remodularization method. In
Proceedings of the Sixth Working Conference on
Reverse Engineering, pages 235–255, 1999.

[2] M. Bauer and M. Trifu. Architecture-aware adaptive
clustering of oo systems. In Eighth European
Conference on Software Maintenance and
Reengineering (CSMR 2004), pages 3 – 14, 2004.

[3] O. Ciupke. Automatic Detection of Design Problems
in Object-Oriented Reengineering. In Technology of
Object-Oriented Languages and Systems - TOOLS 30,
1999.

[4] D. Doval, S. Mancoridis, and B. S. Mitchell.
Automatic clustering of software systems using a
genetic algorithm. In Proceedings of the IEEE
Conference on Software Technology and Engineering
Practice, pages 73–81, 1999.

[5] E. Falkenauer. Genetic algorithms and grouping
problems. Wiley, New York, 1998.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[7] T. Genssler and V. Kuttruff. Source-to-source
transformation in the large. In Proceedings of the Joint
Modular Language Conference. Springer, August 2003.

[8] D. E. Goldberg. Genetic algorithms in search,
optimization, and machine learning. Addison-Wesley,
1989.

[9] J. H. Holland. Adaption in Natural and Artificial
Systems. University of Michigan Press, 1975.

[10] J. Hromkovic. Algorithmics for hard problems.
Springer, 2. ed. edition, 2003.

[11] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R.
Gansner. Bunch: A clustering tool for the recovery
and maintenance of software system structures. In
Proceedings of the IEEE International Conference on
Software Maintenance, pages 50–59, 1999.

[12] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and
E. R. Gansner. Using automatic clustering to produce
high-level system organizations of source code. In
Proceedings of the Sixth International Workshop on
Program Comprehension, pages 45–52, 1998.

[13] R. Martin. Agile Software Development, Principles,
Patterns, and Practices. Prentice Hall, 2002.

[14] D. Parnas. Software aging. In Proceedings of the 16th
International Conference on Software Engineering,
1994.

[15] D. Rayside, S. Reuss, E. Hedges, and K. Kontogiannis.
The effect of call graph construction algorithms for
object-oriented programs on automatic clustering. In
Proceedings of the Eighth International Workshop on
Program Comprehension, pages 191–200. IEEE, 2000.

[16] O. Seng and G. Pache. Search based structure
improvement. In Proceedings of the first International
Workshop on Software Evolution Transformations
(SET 2004), pages 7–10. Queens University, Kingston,
Ontario, Canada, Nov. 2004.

[17] V. Tzerpos and R. Holt. Software botryology.
automatic clustering of software systems. In
Proceedings of the Ninth International Workshop on
Database and Expert Systems Applications, pages
811–818, 1998.

[18] V. Tzerpos and R. C. Holt. The orphan adoption
problem in architecture maintenance. In Working
Conference on Reverse Engineering (WCRE 1997),
page 76, Amsterdam, The Netherlands, Oktober 1997.

[19] T. A. Wiggerts. Using clustering algorithms in legacy
systems remodularization. In Proceedings of the
Fourth Working Conference on Reverse Engineering,
pages 33–43, 1997.

[20] C. T. Zahn. Graph theoretical methods for detecting
and describing gestalt clusters. IEEE Transactions on
Computers, 20(1), 1971.

1051

